\qquad
Precalculus
Purpose: In this problem set, you will be utilizing our factoring methods to graph quadratic functions.
Definition: A quadratic function can be represented in many ways including

Standard Form: $f(x)=a x^{2}+b x+c$
and

$$
\text { Vertex Form: } f(x)=a(x-h)^{2}+k,
$$

where $h=-\frac{b}{2 a}$ and $k=f(h)$.
Question of the day: What does the graph of $f(x)=a(x-h)^{2}+k$ look like, and what types of problems can we solve with this information?

1. Graph the following function given in standard form.

$$
f(x)=x^{2}-2 x+1
$$

2. Graph the following function given in standard form.

$$
g(x)=-x^{2}-4 x-4
$$

3. Graph the following function given in standard form.

$$
h(x)=-2 x^{2}-4 x-1
$$

Now, let's move from a graph to an equation.
4. Find the standard form of the equation describing the given parabola.

Let's investigate the local extrema of quadratic functions.
5. Does a parabola have a minimum? A maximum? When? Where?
6. Does the graph of the function $f(x)=\frac{1}{2} x^{2}+6 x+2$ have a maximum or minimum?
7. Find the point where the function $f(x)=\frac{1}{2} x^{2}+6 x+2$ achieves its local extrema.
8. Does the graph of the function $a(x)=-\frac{1}{2} x^{2}-100 x$ have a maximum or minimum?
9. Find the point where the function $a(x)=-\frac{1}{2} x^{2}-100 x$ achieves its local extrema.

